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Abstract—Autonomous Vehicles (AVs) leverage advanced sens-
ing and networking technologies (e.g., camera, LiDAR, RADAR,
GPS, DSRC, 5G, etc.) to enable safe and efficient driving without
human drivers. Although still in its infancy, AV technology is
becoming increasingly common and could radically transform
our transportation system and by extension, our economy and
society. As a result, there is tremendous global enthusiasm for
research, development, and deployment of AVs, e.g., self-driving
taxis and trucks from Waymo and Baidu. The current practice for
testing AVs uses virtual tests—where AVs are tested in software
simulations—since they offer a more efficient and safer alterna-
tive compared to field operational tests. Specifically, search-based
approaches are used to find particularly critical situations. These
approaches provide an opportunity to automatically generate
tests; however, systematically creating valid and effective tests
for AV software remains a major challenge. To address this
challenge, we introduce SCENORITA, a test generation approach
for AVs that uses an evolutionary algorithm with (1) a novel
gene representation that allows obstacles to be fully mutable,
hence, resulting in more reported violations and more diverse
scenarios, (2) 5 test oracles to determine both safety and motion
sickness-inducing violations and (3) a novel technique to identify
and eliminate duplicate tests. Our extensive evaluation shows that
SCENORITA can produce test scenarios that are more effective in
revealing ADS bugs and more diverse in covering different parts
of the map compared to other state-of-the-art test generation
approaches.

Index Terms—Embedded/cyber-physical systems, search-based
software engineering, software testing.

I. INTRODUCTION

AUTONOMOUS vehicles (AVs), a.k.a. self-driving cars,
are becoming a pervasive and ubiquitous part of our daily

life. More than 50 corporations are actively working on AVs,
including large companies such as Google’s parent company
Alphabet, Ford, and Intel [1], [2], [3]. Some of these companies
(e.g., Alphabet’s Waymo, Lyft, and Baidu) are already serving
customers on public roads [4], [5], [6]. Experts forecast that
AVs will drastically impact society, particularly by reducing
accidents [7]. However, crashes caused by AVs indicate that
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achieving this lofty goal remains an open challenge. Despite the
fact that companies such as Tesla [8], Waymo [1], or Uber [9]
have released prototypes of AVs with a high level of autonomy,
they have caused injuries or even fatal accidents to pedestrians.
For instance, an AV of Uber killed a pedestrian in Arizona back
in 2018 [10]. AVs with lower levels of autonomy have resulted
in more fatalities in recent years [10], [11], [12], [13], [14], [15],
[16], [17].

Prior research has revealed a lack of standardized proce-
dures to test AVs [18] and the inability of current approaches
to effectively translate traditional software testing approaches
into the space of AVs [19], [20]. A common practice for
testing AV software lies in field operational tests, in which
AVs are left to drive freely in the physical world. This ap-
proach is not only expensive and dangerous, but also ineffec-
tive since it misses critical testing scenarios [21] Virtual tests,
where AVs are tested in software simulations, offer a far more
efficient and safer alternative. While these tests provide an
opportunity to automatically generate tests, they come with
the key challenge of systematically generating scenarios
which expose AVs to safety-critical and motion sickness-
inducing situations.

To address this challenge, we propose SCENORITA (scenario
GeneRatIon Testing for AVs), a test generation framework
which aims to find safety and motion sickness-inducing vi-
olations in the presence of an evolving traffic environment.
SCENORITA combines both (i) AV software domain knowledge
and (ii) search-based testing [22], [23]. These two elements
have been combined by previous techniques to test AVs by
automatically generating safety-critical scenarios [24], [25],
[26], [27], [28], [29], [30]. However, unlike these approaches,
SCENORITA’s gene representation enables obstacles to be fully
mutable, i.e., changing any of the properties such as its start and
end location, type (e.g., vehicle, pedestrian, and bike), speed,
size, and mobility (e.g., static or dynamic) can be altered. Pre-
vious techniques do not specify their gene representations or
do so in such a way that allows obstacles to be only partially
mutable: obstacles’ attributes are altered only during mutation
and with a small probability, while during crossover, obstacles
are transferred across scenarios without altering their states or
properties [24], [25], [26], [30], [31]. Thus, these techniques
ignore the challenge of ensuring the creation of valid obstacle
trajectories, reducing their effectiveness at generating driving
scenarios with unique violations.
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Other limitations of prior work include generating driving
scenarios with: (i) manual setup and a limited number of
scenario types; (ii) a small fixed number of obstacles per sce-
nario; and (iii) obstacles with fixed trajectories and limited
maneuvers which require manual specification. SCENORITA’s
gene representation allows obstacles to fully evolve through-
out the test generation process, while still adhering to traffic
laws and providing the ego car with ample amount of time to
react to any potential violations. This novel gene representa-
tion addresses the limitations in the state-of-the-art approaches
(Section II), as follows:

• SCENORITA eliminates the need for manual and fixed
scenario setup by doing the following: (i) given any HD
map, SCENORITA parses the map and generates a directed
graph of all points (nodes) residing in the map and their
connected lanes (edges), (ii) this directed graph is used to
validate the trajectories of ego car and obstacles at the start
of the test generation, and as they evolve and mutate during
the evolution process. In other words, there is no need to
manually set a fixed trajectory for the ego car or obstacles,
as SCENORITA handles that automatically.

• Since there is no need to manually setup any scenarios (i.e.,
obstacles and the ego car can be placed anywhere in the
map and it is ensured that they adhere to traffic laws and
are within acceptable proximity), this allows SCENORITA
to generate a much larger, diverse, and complex set of
scenario types which: (i) cover as many lanes and lane
types, in a map, as possible (e.g., single- or multi-lane
roads with either the same or the opposite traffic direction,
U-turns, roundabouts, cross or T intersections, merged
lanes, etc.); (ii) does not have a limited or fixed number of
obstacles; (iii) supports any combination of maneuvers per
scenario for both an ego car and an obstacle. For example,
in one scenario, an ego car can be directed to follow an
obstacle before it changes lanes and then turns right at
an intersection.

• As shown later in our evaluation results, SCENORITA is
more effective, more diverse, and more efficient com-
pared to the state-of-the-art approaches (i.e., AV-FUZZER
and AutoFuzz) that, unlike SCENORITA, require signif-
icant manual specification per scenario type, especially
for trajectories.

Additionally, previous work on AV software testing uses a
highly limited number of test oracles for ensuring safety and no
oracles for assessing motion sickness-inducing movement of an
AV: State-of-the-art AV testing approaches (AC3R [31], AsFault
[25], AV-FUZZER [24], AutoFuzz [30] and Abdessalem et al.
[28], [29]) use only two oracles for checking if (1) the ego
car reaches its final expected position while avoiding a crash
(i.e., collision detection) and (2) if a vehicle drives off the road
(i.e., off-road detection). As a result, the fitness functions these
techniques utilize are overly simplified—substantially reducing
their degree of safety assurance while completely ignoring rider
comfort and motion sickness. Research has shown that a rider’s
discomfort increases when a human is a passenger rather than a
driver—with up to one-third of Americans experiencing motion

sickness, according to the National Institutes of Health (NIH)
[32], [33], [34].

To overcome such limitations, SCENORITA utilizes 5 test
oracles (i.e., collision detection, speeding detection, unsafe lane
change, fast acceleration, and hard braking) and correspond-
ing fitness functions—which are based on grading metrics for
driving behavior defined by Apollo’s developers [35]. Apollo
is a high autonomy (i.e., Level 4), open-source, production-
grade AV software system created by Baidu. The Society of
Automotive Engineers (SAE) defines 6 levels of vehicle au-
tonomy [36], [37], where Level 4 (L4) AV systems, such as
Apollo, have the AV perform all driving functionality under
certain circumstances, although human override is still an op-
tion. Apollo is selected by Udacity to teach state-of-the-art AV
technology [38] and can be directly deployed on real-world AVs
such as Lincoln MKZ, Lexus RX 450h, GAC GE3, and others
[39], [40], and has mass production agreements with Volvo and
Ford [41]. Additionally, Apollo has already started serving the
general public in cities (e.g., a robo-taxi service in Changsha,
China [42]).

The main contributions of this paper are as follows:
• We introduce SCENORITA, a search-based testing frame-

work, with a novel gene representation and domain-
specific constraints, that automatically generates valid and
effective driving scenarios. SCENORITA aims to maximize
the number of scenarios with unique violations and relies
on a novel gene representation of driving scenarios, which
enables the search to be more effective: Our gene repre-
sentation allows the genetic algorithm to alter the states
and properties of obstacles in a scenario, allowing them
to be fully mutable. Moreover, this representation enables
SCENORITA to generate diverse scenario types with unlim-
ited vehicle maneuvers and without the need for manual
setup. We specify a set of domain-specific constraints
to ensure that the generated driving scenarios are valid.
To the best of our knowledge, we are the first to define
the exact values of these constraints, which are obtained
from authoritative sources such as the National Center for
Health Statistics, Federal Highway Administration, and
the US Department of Transportation [43], [44], [45], [46].

• To improve the effectiveness of SCENORITA, we automate
the process of identifying and eliminating duplicate vio-
lations by using an unsupervised clustering technique to
group driving scenarios, with similar violations, according
to specific features.

• We utilize 5 test oracles and corresponding fitness func-
tions to assess different aspects of AVs—ranging from
traffic and road safety (i.e., collision detection, speeding
detection, and unsafe lane change) to a rider’s comfort
(i.e., fast acceleration and hard braking). To the best of our
knowledge, SCENORITA is the first search-based testing
technique for AV software that uses multiple test oracles
at the same time and considers both comfort and safety
violations as part of those oracles.

• We evaluate the effectiveness and efficiency of
SCENORITA by comparing it against state-of-the-art
approaches (i.e., AV-FUZZER and AutoFuzz) that do
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not utilize a fully-mutable gene representation and thus,
unlike SCENORITA, require significant manual effort to
specify each scenario type, especially for trajectories.

Our extensive evaluation—which consists of executing a
total of 79,051 virtual tests on Baidu Apollo using 4 high-
definition maps of cities/street blocks located in California:
Borregas Ave (60 lanes); San Mateo (1,305 lanes); San Fran-
cisco (1,524 lanes); and Sunnyvale (3,061 lanes)—shows that
SCENORITA generates driving scenarios that expose the ego
car to critical and realistic situations. SCENORITA found 1,146
unique comfort and safety violations, while 2 state-of-the-art
approaches found a total of 7 and 37, respectively. Further-
more, SCENORITA generated between 4.95 and 8.22 times
more scenarios than those approaches in the same amount of
time. We make our testing framework available online to en-
sure reusability, reproducibility, and others to build upon our
work [47].

II. RELATED WORK

A wide array of studies focus on applying traditional test-
ing techniques to AVs including adaptive stress testing [48],
where noise is injected into the input sensors of an AV to cause
accidents; fitness function templates for testing automated and
autonomous driving systems with heuristic search [49]; and
search-based optimization [50]. These studies provide limited
insights into the testing of real-world AVs, since they do not
evaluate their techniques on open-source, production-grade AV
software.

Other related work focuses on the vision and machine-
learning aspects of AV software [28], [29], [51], [52], [53],
[54], [55], [56]. Rather than focus on these aspects, SCENORITA
targets the planning component of AV software. Previous work
has shown that the most bug-ridden component of production-
grade, open-source AV software systems is the planning compo-
nent as opposed to the components responsible for or utilizing
vision or machine-learning capabilities of AVs [57].

Reproducing tests from real crashes. Crashes are recre-
ated by replaying the sensory data collected during physical-
world crashes in [58]. Similarly, AC3R [31] generates driving
simulations that reproduce car crashes from police reports using
natural language processing (NLP). However, AC3R requires
manual collection of police reports and inherits the accuracy
limitations of the underlying NLP used to extract information
from police reports.

Search-based procedural road generation. AsFault [25]
uses procedural content generation and search-based testing
to automatically create challenging virtual scenarios for AV
software. Similarly, tools published as part of the Search-Based
Software Testing Challenge (SBST) [59], [60] generate chal-
lenging road networks for virtual testing of an automated lane-
keeping system such as GABezier [61], Frenetic [62], and
Deeper [63]. However, none of these tools take into account the
behavior of other obstacles when testing for safety violations in
AVs. Other tools in the SBST Challenge derive tests for Java
such as EvoSuite [64] and Kex [65]. None of the latter tools are
targeted to generate tests for autonomous vehicles.

Next, we discuss interesting but orthogonal research
problems such as Li et al. [66] which discussed the original
idea to consider the safety and comfort of autonomous vehicles.
However, this work does not formalize or encode safety and
comfort—when evolving driving scenarios—to produce tests
that expose the autonomous vehicle to safety and comfort vi-
olations. This work, instead, aims to provide a quantitative way
to measure the safety and comfort of autonomous driving in
a test. Another major distinction between scenoRITA and Li
et al.’s approach is that the latter is not a fully automatic test
generation framework. This approach requires a human expert
to vaguely define “test tasks” and perform qualitative judgments
before the simulation-based system can make more precise task
definitions and generate more tests. The human expert then pro-
vides feedback to the simulation system to validate test results.

Another orthogonally related work is by Calò et al. [26]
which proposed two search-based approaches for finding avoid-
able collisions. They define comfort and speed as weights to
rank short-term paths; however, they do not formalize comfort
and speed in the fitness function, nor do they evaluate them.
The main focus of our paper is not to introduce a sophisticated
approach to evaluate violations’ “avoidability” but to find as
many violations as possible. Nonetheless, we still ensure that
the generated tests are valid using time-, speed-, and location-
related thresholds to determine “avoidable” violations.

As opposed to finding safety and comfort violations, Luo
et al. propose a framework (EMOOD) [67] that evolves tests
to identify combinations of requirements violations. In other
words, EMOOD aims to find different requirements violation
patterns for two reasons: (i) different combinations of require-
ments violations can expose different types of failures. For
example, the type of failure in which the autonomous vehicle
collides while running a red light is different from the one
in which the autonomous vehicle collides while violating lane
keeping, as the different combinations of requirements viola-
tions may provide different insights about the cause of the colli-
sions; (ii) satisfying all requirements may not be possible for an
Autonomous Driving System (ADS) in practice, as unexpected
events may happen in highly open and dynamic environments.
In response to these unexpected events, the control software
of the ADS has to make trade-offs among requirements, likely
resulting in one or more requirements being violated.

Table I compares SCENORITA with the state-of-the-art
techniques that are most closely related. Scenario Types in
Table I refer to the number of different scenarios supported by
each approach. A scenario type is determined by (i) a specific
part of a map (e.g., intersection X in map Y), (ii) the number
of obstacles in that scenario, (iii) the movement path/routing of
obstacles and the ego car (e.g., obstacle O starts at point A and
ends at point B), (iv) the allowed maneuvers of obstacles and
the ego car (e.g., obstacle O only turns right at an intersection).
For example, [68] generates tests for one scenario type only,
which consists of one pedestrian crossing the same street
in a given map, with fixed trajectories for both the ego car
and pedestrian, throughout the test generation process. Another
approach [69] generates driving scenarios where obstacles only
perform a right or left lane change and no other maneuvers are
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TABLE I
COMPARING SCENORITA WITH THE MOST-SIMILAR RELATED WORK

SCENORITA AV-FUZZER [24] AutoFuzz [30]

Main Objective

Generate driving scenarios that ex-
pose the ego car to 3 types of
safety-critical and 2 types of motion
sickness-inducing scenarios

Find collision violations of au-
tonomous vehicles in the presence of
an evolving traffic environment

A grammar-based fuzzing technique
for finding collision and off-road
violations in AV controllers

Supports High Definition
(HD) Maps Yes Yes Yes

Representations (gene) Fully Mutable Partially Mutable Partially Mutable

Scenario Types Unlimited
Limited (1 scenario: the ego car and
obstacles travel along a lane)

Limited (2 scenarios: (1) going
across a junction, (2) turning left at
a junction)

Scenario Configuration Automated Manual Manual

Supported Maneuvers

Supports any combination of the
following maneuvers: Lane Follow,
Lane Change, Left Turn, Right Turn,
Cross Intersection, U-Turn, Lane
Merge, Acceleration, Deceleration.

Supports one maneuver at a time
from 4 possible maneuvers: Accel-
eration, Deceleration, Lane Follow,
and Lane Change.

Supports one maneuver at a time
from 6 possible maneuvers: Ac-
celeration, Deceleration, Turn Left,
Turn Right, Lane Follow, and Lane
Change.

Ego Car Routing Flexible Fixed Fixed

No. Obstacles Per Scenario 10–30 2
1, 2 or 4 (depending on the manual
specification)

Collision Detection Supported Supported Supported

Speeding Detection Supported Not Supported Not Supported

Unsafe Lane Change Supported Not Supported Not Supported

Fast Acceleration Supported Not Supported Not Supported

Hard Braking Supported Not Supported Not Supported

No. Manually-Specified Vari-
ables Per Scenario Type 0 12 10 + (20 Per Obstacle)

Fig. 1. An illustration of one of five supported driving scenarios in Auto-
Fuzz. (a) The ego car (in red) starts at a fixed location and then turns left at
a signalized junction, while another vehicle (in blue) crosses the intersection
from the other side and a pedestrian crosses the street. (b) The ego car turns
left and collides with an incoming car (in blue). (c) The ego car turns left
and collides with a pedestrian crossing the street.

supported. Similarly, [70] generates 4 scenario types where: the
ego car only turns left at an intersection in one scenario, only
drives straight in two others, and only performs a lane change
in the last scenario. The approaches depicted in Table I and sim-
ilarly [67], [68], [69], [70], [71], [72], [73] fail to find diverse
violations due to the limited number and lack of diversity in
generated scenarios (the maximum number of scenario types
supported by any of these tools is 7 scenario types).

Scenario Configuration in Table I refers to the means used
to set up a Scenario Type. For example, to set up a Scenario
Type similar to Fig. 1(a) in AutoFuzz [30], one must manually
set (i) start and end location of the ego car in a specific map, (ii)
allowed maneuver of the ego car (e.g., in Fig. 1(a), the ego car
always turns left), (iii) the number and type of obstacles (e.g., in
Fig. 1(a), there’s one car and one pedestrian), (iv) start and end

locations for every possible obstacle in that scenario (e.g., in
Fig. 1(a), one must specify the routing info of the blue car and
the pedestrian). Any slight difference in one scenario type in
AutoFuzz, requires manually modifying its configuration. We
believe that the reason for the limited number of scenario types
and limited maneuvers in related work is due to the fact that
these tools require a manual setup for driving scenarios. For
example, to generate a scenario other than the ones specified by
the authors of these tools, a typical developer has to go through
(1) using an HD map viewer to visualize the map, (2) selecting
a point on the map to place the ego vehicle, (3) finding the
coordinate of the selected point, and (4) calculating the vehicle’s
heading. After correctly completing these 4 steps, a developer
will have a single waypoint that specifies a coordinate and
heading of the initial location of the ego car. The same 4-step
process needs to be repeated for specifying the ego car’s final
location, and the locations of all other road traffic participants.
All of these steps are difficult to accomplish since HD maps are
difficult for humans to read and cannot be visualized without a
dedicated tool.

Ego Car Routing in Table I indicates whether an approach
supports flexible ego car routing (i.e., an ego car can traverse
different paths in a map, covering as many roads of the map as
possible) or fixed routing (i.e., ego car traverses the same path
over and over again), hence, must be defined manually.

The need to manually set up these scenarios can be attributed
to the gene representation used in related work. These tools
avoid applying search operators on an obstacle attribute level
(unless it’s the speed attribute) due to the tools’ inability to
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generate obstacles with valid new trajectories. For example,
applying a crossover between two obstacles can result in an
offspring with a new movement path (trajectory); hence, there
needs to be a mechanism that ensures that the newly generated
obstacle has a valid trajectory (i.e., travels in the direction of
traffic, with close proximity to the ego car but still allows the
ego car ample amount of time to react to any potential violations,
not placed in the middle of intersections, etc.). The challenging
aspect in generating complex and diverse scenarios is to be
able to evolve obstacles fully regardless of the initial setup of
such obstacles in a scenario. Related work evolves obstacles
in tests by either: (i) transferring obstacles across scenarios
without altering their states or properties, or (ii) mutating the
speed of such obstacles or moving them to neighboring lanes.
As a result, these works opt for using fixed, manually-setup
scenarios—throughout test generation—with obstacles and the
ego car having fixed trajectories and limited maneuvers.

SCENORITA aims to address the fundamental research chal-
lenge of burdensome human efforts in ADS testing by analyzing
the HD map so that waypoints can be automatically generated.
After automatically identifying the initial and final location
of the obstacle, it uses algorithms used by the ADS’ routing
module to compute the lanes the obstacle needs to travel on
and uses robotics algorithms (e.g., the Stanley Controller, PID
speed control) to execute the maneuvers. As a result, any obsta-
cle can execute complex and smooth trajectories without any
human effort. By not involving any human effort, scenarios that
SCENORITA generates cover a significantly larger range of road
structures and traffic control devices (i.e., traffic lights, and stop
signs), which we will elaborate on in Section V-C.

Moreover, the approaches described in this section, only find
collision violations [24], [26], [30], [68], [69], [70], [71], [72]
or test ADS’ lane-keeping capability [25], [61], [62], [63], [73].
None of them evolve tests for a combined set of safety violations
(collision, speed, and unsafe lane change), and none of them
report comfort violations.

III. SPECIFICATION OF THE STATE SPACE

To aid in the generation of effective and valid scenarios, we
present a formal specification of the state space in the form
of driving scenarios. SCENORITA uses this formal specification
of the state space, along with a genetic algorithm, to generate
scenarios that maximize the possibility of the ego car (i.e., AV)
either violating safety or causing rider discomfort.

Definition 1: A Scenario Sc is a tuple 〈t, E,O,L〉 where:
• t is a finite number that represents the maximum duration

of Sc.
• E is the only ego car (i.e., the autonomous driving car)

in Sc.
• O is a finite, non-empty set of n obstacles (i.e. non-player

characters). A single obstacle is represented as Ok where
O= {Ok : 1≤ k ≤ n}.

• L is a finite, non-empty set of lanes, where E and O

reside/travel.
Definition 2: An ego car E is a tuple 〈ZE ,PE , SE ,

AE ,CE ,PDE〉 where:

• ZE = 〈wid, len, hgt〉 represents the widthwid, length len,
and height hgt of the ego car E.

• PE is a finite, non-empty set representing the ego car’s
positions during time instants of Sc. The position of E at
timestamp j is represented as pEj where PE = {pEj : 1≤
j ≤ t}.

• SE is a finite, non-empty set representing the ego car’s
speed during time instants of Sc. The speed of E at times-
tamp j is represented as sEj where SE = {sEj : 1≤ j ≤ t}.

• AE is a finite, non-empty set representing the ego car’s
acceleration at time instants of Sc. The acceleration of E
at timestamp j is represented as aEj where AE = {aEj : 1≤
j ≤ t}.

• CE is a finite, non-empty set of durations an ego car spends
driving at the boundary of two lanes at the same time.
When an ego car changes lanes, it drives on the markings
between two lanes for a period of time c, before it com-
pletely switches to the target lane. The duration E spends
driving on the markings at timestamp j is represented as
cEj where CE = {cEj : 1≤ j ≤ t}.

• PDE = {pdEj : 1≤ j ≤ t} is a finite, non-empty set of
planning decisions at time instants of Sc. A planning deci-
sion is a pair 〈tEpd,PP〉 produced by the ego car’s planning
module where:

– tEpd is the timestamp at which the planning decision
PDE was made.

– PP = 〈(x1, y1, t1), (x2, y2, t2), ..., (xn, yn, tn)〉 is a fi-
nite sequence representing the ego car’s planned posi-
tions, relative to timestamp tEpd, where the ego car plans
to reach position (xj , yj) at timestamp tEpd + tj and
1≤ j ≤ n.

Definition 3: A single obstacle Ok in Sc is a tuple
〈IDOk

, TOk
, ZOk

,MOk
,POk

, SOk
〉 where:

• IDOk
represents a unique identification number associated

with Ok.
• TOk

represents the type of an obstacle. Examples of
obstacle types are: VEHICLE, PEDESTRIAN, and
BICYCLE.

• ZOk
= 〈wid, len, hgt〉 represents the width wid, length

len, and height hgt of obstacle Ok.
• MOk

represents the mobility of an obstacle (e.g., static or
mobile).

• POk
is a finite, non-empty set representing the positions of

Ok at time instants of Sc. The position of Ok at timestamp
j is represented as pOk

j where POk
= {pOk

j : 1≤ j ≤ t}.
• SOk

is a finite, non-empty set representing the speed of Ok

at time instants of Sc. The speed of Ok at timestamp j is
represented as sOk

j where SOk
= {sOk

j : 1≤ j ≤ t}.
Definition 4: A single lane l in L is a tuple 〈Sl,Pl〉 where:
• Sl is a finite, non-empty set representing the speed limit

imposed by l. The speed limit of l, which the ego car is
traversing at timestamp j, is represented as slj where Sl =
{slj : 1≤ j ≤ t}.

• Pl is a finite, non-empty set representing the position of
the closest lane boundary to the ego car. The position of
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Fig. 2. An Overview of SCENORITA.

l’s boundary, which the ego car is traversing at timestamp
j, is represented as plj where Pl = {plj : 1≤ j ≤ t}.

Definition 5: We define a violation v ∈ V= {collision,
speed, unsafeChange, fastAccl , hardBrake}. We elaborate
on the oracles corresponding to each of these violations in
Section IV-E.

IV. SCENORITA

Fig. 2 shows the overall workflow of SCENORITA. Our main
goal is to create valid and effective driving scenarios that
expose AV software to unique safety and comfort violations.
SCENORITA achieves this goal as follows: (1) it takes as an input
a set of domain-specific constraints, which dictates what consti-
tutes a valid driving scenario (e.g., obstacles should be moving
in the direction of traffic in the lane and have valid obstacle iden-
tifiers); (2) The Scenario Generator uses a genetic algorithm
to produce genetic representations of driving scenarios with
randomly generated but valid obstacles, following the domain-
specific constraints. The genetic algorithm evolves the driving
scenarios with the aim of finding scenarios with safety and
comfort violations; (3) Generated Scenarios Player converts
the genetic representation of scenarios (Generated Scenarios),
from the previous step, into inputs to the ADS and executes
a scenario. The planning output of the ADS under test will
be produced by the ADS’s planning module and recorded by
Planning Output Recorder; (4) The planning output is then
evaluated by Grading Metrics Checker for safety and comfort
violations; (5) When the evolution process terminates, the Du-
plicate Violations Detector inspects the violations produced by
Grading Metrics Checker to eliminate any duplicate violations
and produces a set of unique safety and comfort violations. In
the remainder of this section, we discuss each of these elements
of SCENORITA in more detail.

A. Domain-Specific Constraints

Table II specifies the list of constraints that Scenario Genera-
tor should follow to ensure that the generated driving scenarios

are valid. In this work, we define valid scenarios as those which
contain obstacles that are (1) moving in the direction of traffic
in the lane; (2) having start and end points contained within the
boundaries of a fixed-size map; and (3) having dimensions (i.e.
width, height, and length) and speed that account for the obsta-
cle type (vehicle, pedestrian, or bike). For example, the speed
of a pedestrian should not exceed the average walking/running
speed of a human.

When generating the initial and final position of the ego car
and obstacles, Scenario Generator must ensure that these points
are (i) within the boundaries of a fixed-size map, and (ii) have
a valid path allowing the ego car and obstacles to move in the
direction of traffic.

Unlike prior work, we consider a wide range of obstacle-
related attributes including type, size, speed, and mobility. An
obstacle can be a VEHICLE, BICYCLE, or a PEDESTRIAN,
and the type of an obstacle dictates the minimum and maximum
allowed values of its size and speed. An obstacle is represented
as a polygon, hence, its size is expressed in terms of the width,
height, and length (i.e., ZOk

) of the polygon. The ego car E is
similarly represented as a polygon based on ZE .

To determine the maximum and minimum dimensions of a
pedestrian, we followed the most recent report published by
the National Center for Health Statistics (NCHS) [43], which
provides the most recent anthropometric reference data for chil-
dren and adults in the United States. The height of a pedestrian
ranges from 0.97 m (average height of a child) to 1.87 m
(average height of an adult aged 20+). The width (shoulder
width) ranges from 0.24 m to 0.67 m, while the length ranges
from 0.2 m to 0.45 m. The speed of a pedestrian can range
from 4.5 km/h (average walking speed) to 10.5 km/h (average
running speed) [74].

To determine the maximum and minimum dimensions and
speed for both bicycles and vehicles, we followed the size and
speed regulations imposed by the Federal Highway Administra-
tion and the US Department of Transportation [44], [45]. The
speed of a bicycle can range from 6 km/h to 30 km/h, while
the speed of a vehicle can range from 8 km/h (e.g., parking
lots) to 110 km/h (e.g., highways).
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TABLE II
A LIST OF DOMAIN-SPECIFIC CONSTRAINTS THAT SCENARIO GENERATOR ADHERES TO WHEN CREATING DRIVING SCENARIOS

Scenario Attr. Sub-Attr. Description Constraints

Ego Car Initial Position The start position of the ego car in the map Initial Position should be within the map boundaries

Final Position The destination position of the ego car in the
map

Final Position should be within the map boundaries, and there
should be a valid path between the ego car’s Initial and Final
Position

Obstacles

ID A unique identification number associated with
each obstacle in a Scenario

Obstacles in a single Scenario have unique IDs

Initial Position The start position of an obstacle in the map Initial Position should be within the map boundaries

Final Position The destination position of an obstacle in the
map

Final Position should be within the map boundaries, and there
should be a valid path between the obstacle’s Initial and Final
Position

Type The type of an obstacle
An Obstacle can be one of the following values: (VEHICLE,
BICYCLE, PEDESTRIAN)

Speed
Maximum speed of an obstacle, measured in
km/h. The obstacle type dictates the valid
minimum and maximum speed of an obstacle:

VEHICLE
The speed of a vehicle can range from 8 km/h (e.g., parking
lots) to 110 km/h (e.g., highways)

BICYCLE The speed of a bicycle can range from 6 km/h to 30 km/h

PEDESTRIAN
The speed of a pedestrian can range from 4.5 km/h (average
walking speed) to 10.5 km/h (average running speed)

Width
Width of an obstacle, measured in meters. The
obstacle type dictates the valid minimum and
maximum width of an obstacle:
VEHICLE [1.5 - 2.5] in meters
BICYCLE [0.5 - 1] in meters
PEDESTRIAN [0.24 - 0.67] in meters

Length
Length of an obstacle, measured in meters. The
obstacle type dictates the valid minimum and
maximum length of an obstacle:
VEHICLE [4 - 14.5] in meters
BICYCLE [1 - 2.5] in meters
PEDESTRIAN [0.2 - 0.45] in meters

Height
Height of an obstacle, measured in meters. The
obstacle type dictates the valid minimum and
maximum height of an obstacle:
VEHICLE [1.5 - 4.7] in meters
BICYCLE [1 - 2.5] in meters
PEDESTRIAN [0.97 - 1.87] in meters

Motion The motion of an obstacle An Obstacle can either be: static or mobile

B. Scenario Generator

Our overarching goal is to create valid and effective driv-
ing scenarios that expose AV software to safety and comfort
violations. The Scenario Generator takes as input a set of
domain-specific constraints (Section IV-A) and uses a genetic
algorithm to maximize a defined set of fitness functions (rep-
resenting safety and comfort violations) to guide the search
for problematic scenarios. The genetic algorithm is initialized
with a starting population of obstacles; these obstacles form
groups, and each group of obstacles represents road-traffic
participants for a single scenario. To evaluate the fitness of
obstacles, scenario representations are transformed into driving
simulations, in which navigation plans are generated based on
the origin and destination of the ego car. Additionally, driving
trajectories/plans are computed for the ego car based on the
scenario set-up (e.g., number of obstacles, state of the obstacles,
ego car start and target position, etc.). For example, the ego
car’s start position should be outside of any intersection and
with sufficient distance away from other obstacles. During the
simulation, the driving decisions of the ego car (e.g., driving
maneuvers, stop/yield decisions, acceleration) are recorded by

Planning Output Recorder at regular intervals to identify safety
and comfort violations. A set of values such as the distance
between the ego car and other obstacles, the distance between
the ego car and lane boundaries, the speed of the ego car, and the
acceleration and deceleration of the ego car are used to compute
the fitness of obstacles (Section IV.B.2). These values guide
the genetic algorithm when evolving obstacles by recombining
and mutating their attributes (Section IV.B.3). The algorithm
continues to execute and evolve obstacles until a user-defined
ending condition is met, at that point, SCENORITA returns the
final test suite and stops.

1) Representation: Fig. 3(a) illustrates the genetic repre-
sentation of an individual generated by SCENORITA. Individ-
uals from the population are grouped into sub-populations,
i.e., demes, that, in turn, represent scenarios. Each deme
has a different ego car and a set of obstacles from other
demes, and obstacles evolve within a deme independently from
other demes.

An individual is represented as a vector, where each index
in the vector represents a gene. The number of input genes is
fixed, where the 9 genes correspond to the following 9 attributes
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Fig. 3. Genetic representation of fully-mutable tests in SCENORITA (a), and
partially mutable tests generated by state-of-the-art approaches (b).

of a single obstacle Ok: IDOk
; the initial position pOk

1 of Ok;
the final position pOk

t of Ok at the final timestamp t; length
ZOk

.len; width ZOk
.wid; and height ZOk

.hgt; initial speed
sOk
i at timestamp j; type TOk

; and mobility MOk
. Each gene

value can change (e.g., when initialized or mutated), but it still
has to adhere to the valid ranges defined in Section IV-A.

One of the key insights of our approach is enabling full
mutability of obstacles and, thus, greater diversity by represent-
ing obstacles as individuals instead of genes. To that end, we
use a non-traditional means of relating obstacles to scenarios
by introducing intermediate genetic elements (i.e., demes) that
represent driving scenarios. Fig. 3(b) shows the genetic repre-
sentation of tests that other meta-heuristic approaches utilize,
where individuals represent scenarios and obstacles represent
genes, significantly limiting the ability to modify an obstacle.

Representing obstacles as individuals allows SCENORITA
to alter obstacles’ attributes and states when applying search
operators, hence, allowing obstacles to be fully mutable
throughout the test generation process. Fig. 4(b) demonstrates
SCENORITA’s application of a crossover operator on two indi-
viduals (i.e., obstacles) compared to how related work recom-
bines their individuals (Fig. 4c). Previous approaches [24], [25],
[26], represent obstacles as genes, resulting in obstacles being
mostly the same across all scenarios generated. For example,
obstacle attributes in AV-FUZZER [24] cannot be altered, re-
sulting in scenarios in which the same obstacles always start
from the same location. Prior approaches also have a limited
selection of obstacles because they have to choose from what
the simulator supports (e.g., sedans, SUVs, trucks, and a school
bus), and a user may not change the dimensions of any of
the obstacle types. To overcome this limitation, SCENORITA
includes obstacle dimensions in the representation and, as a
result, can generate obstacles with more diverse dimensions and
obstacle properties.

By incorporating more fine-grained attributes (e.g., location)
into the representation of obstacles, SCENORITA must address
the challenge of ensuring the creation of valid obstacle tra-
jectories. To address this challenge, we leverage the insight
that path-finding algorithms used by the routing module of the
ADS can be repurposed to find valid paths for the obstacles.

Fig. 4. (a) Two individuals (obstacles) before a crossover, (b) the same in-
dividuals (obstacles) after a crossover for SCENORITA, and (c) how crossover
is applied in prior work [24].

SCENORITA also uses those algorithms to check whether there
is a valid path between the start and end location of an obstacle,
and further corrects invalid start and end locations that may
have resulted from the mutation and crossover operators. This
process allows SCENORITA to automatically generate valid ob-
stacle paths instead of requiring human effort to specify each
path and is shown to be more effective in finding violations and
more diverse in terms of covering different parts of the map. We
will further elaborate on this in Section V-B and Section V-C.

2) Fitness Evaluation: In each generation, individuals are
assessed for their fitness, with respect to the search objective,
to be selected to pass on their genes. SCENORITA determines
the fitness of an individual by evaluating how close they are in
terms of causing safety or comfort violations. This is measured
by calculating the fitness of an individual i using a function
fv(i) with respect to the safety and comfort violation v. Recall
from Section I that SCENORITA considers 5 safety and comfort
violations based on the grading metrics defined by Apollo’s
developers [35] and, thus, represents violation constructs and
thresholds used by professional AV developers. Three of these
metrics assess driving scenarios for traffic and road safety (col-
lision detection, speeding detection, and unsafe lane change),
while the remaining two metrics assess a rider’s comfort (fast
acceleration and hard braking).

The fitness of an individual i is determined as follows:

F (i) =
(
fcollision(i), fspeed(i), funsafeChange(i),

ffastAccl(i), fhardBrake(i)
)

(1)

Recall that v ∈ V= {collision, speed, unsafeChange,
fastAccl , hardBrake} (Definition 5), hence, F (i) aims to
maximize the number of violations. In the remainder of this
section, we define fv(i) in more detail.

Collision Detection. In the context of collision detection,
effective tests are those which cause the ego car to collide
with other obstacles. Therefore, SCENORITA uses as a fitness
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function fcollision (Equation 2), which rewards obstacles that
move as close as possible to the ego car. Given a simulated
scenario with a maximum duration of t, a set of positions PE

for the ego car E, and a set of individuals (i.e., obstacles),
the position of each individual i in the scenario is defined as
Pi = (pi1, p

i
2, ..., p

i
t). From these, we define fcollision as:

fcollision(i) = min{Dc(p
E
j , p

i
j) | 1≤ j ≤ t ∧

pEj ∈ PE ∧ pij ∈ Pi} (2)

Dc(p
E , pi) is the shortest distance between the position of

individual i and the ego car at a given time. fcollision captures
the intuition that obstacles that move closer to the ego car (i.e.,
have a minimum distance between the ego car and the obstacle)
are more likely to lead to a collision.

Speeding Detection. We use a fitness function fspeed (Equa-
tion 3), which rewards obstacles that cause the ego car to exceed
the speed limit or the current lane. Given a simulated scenario
with a maximum duration t, the speed profile SE of the ego car
E, and a set of speed limits imposed by lanes of which the ego
car traversed SL, we define fspeed as:

fspeed(i) = min{Ds(s
l
j , s

E
j ) |

1≤ j ≤ t ∧ sEj ∈ SE ∧ slj ∈ SL} (3)

sEj and slj represent the ego car speed and the speed limit
of the lane in which the ego car is traveling at timestamp j,
respectively. Furthermore, Ds(s

l, sE) is the difference between
the speed limit imposed by a given lane and the current speed
of the ego car. fspeed captures the intuition that as the ego car
approaches the speed limit of a given lane it is more likely to
result in speed violations.

Unsafe Lane Change. A lane change is defined as a driving
maneuver that moves a vehicle from one lane to another, where
both lanes have the same direction of travel. We primarily focus
on the duration the ego car spends traveling at the boundary of
two lanes while changing lanes. We define a safe lane-change
duration as δsafe. We define a fitness function funsafeChange

(Equation 4), which rewards obstacles that cause the ego car
to spend more than δsafe driving at the boundary of two lanes.
Given a simulated scenario with lane-change durations CE for
ego car E, and a safe lane-change duration δsafe, we define
funsafeChange as:

funsafeChange(i) = max{cEj | 1≤ j ≤ t} (4)

cEj ∈ CE represents the duration an ego car spends driving
between two lanes. funsafeChange captures the intuition that
obstacles causing the ego car to spend longer periods of time
driving on lane boundaries are more likely to result in an unsafe
lane change violation.

Fast Acceleration. We use a fitness function ffastAccl (Equa-
tion 5), which rewards obstacles that cause the ego car to
accelerate too fast, potentially inducing motion sickness. Given
a simulated scenario with a maximum duration t and the accel-
eration profile AE for the ego car E, we define ffastAccl as:

ffastAccl(i) = max{aEj | 1≤ j ≤ t ∧ aEj ∈ AE} (5)

aEj ∈ AE represents the acceleration of the ego car E at times-
tamp j. ffastAccl aims to maximize the acceleration of E to
induce a motion sickness violation.

Hard Braking. We use a fitness function fhardBrake (Equa-
tion 6), which rewards obstacles that cause the ego car to brake
too hard (i.e., brake suddenly in a manner that induces motion
sickness). Given a simulated scenario with a maximum duration
t, the acceleration profile for the ego car defined as AE , we
define fhardBrake as:

fhardBrake(i) = min{aEj | 1≤ j ≤ t ∧ aEj ∈ AE} (6)

aEj ∈ AE represents the deceleration of the ego car. Similar to
the previous fitness function, fhardBrake aims to maximize the
deceleration of E to induce a hard-braking violation.

3) Search Operators: SCENORITA evolves driving scenarios
by applying search operators, which mutate and recombine
the scenario attributes according to certain probabilities. In
this section, we provide a detailed explanation of these search
operators.

Selection. SCENORITA uses the Non-dominated Sorting
Genetic Algorithm selection (NSGA-II [75]) for breeding the
next generation. NSGA-II is an effective algorithm used for
solving multi-objective optimization problems (i.e., problems
with multiple conflicting fitness functions) and further aims to
maintain the diversity of individuals.

NSGA-II starts by sorting a set of individuals based on a non-
dominated order. In a multi-objective problem, an individual i1
is said to dominate another individual i2 if (1) i1 is no worse
than i2 for all objective functions (e.g., collision detection,
speeding detection, etc.), and (2) i1 is strictly better than i2 in
at least one objective. Once the non-dominated sort is complete,
a crowding distance is assigned to every individual in a given
scenario. A crowding distance measures how close individuals
are to each other; a large average crowding distance will result
in better diversity in the population. Once the crowding distance
is assigned, parent individuals are selected to produce offspring
based on the fitness and crowding distance; an individual is
selected if its order rank is less than the other, or if the crowding
distance is greater than the other. Only the best N individuals
are selected, where N is the population size.

The intuition behind using NSGA-II selection is threefold:
(1) it uses an elitist principle, i.e., the most elite individ-
uals in a scenario are given the opportunity to be repro-
duced so their genes can be passed on to the next genera-
tion; (2) it uses an explicit diversity-preserving mechanism
(i.e., crowding distance), which maintains the diversity of driv-
ing scenarios in SCENORITA; and (3) it emphasizes the non-
dominated solutions.

Crossover. This operator selects two individuals (obstacles)
from a given deme (scenario) and creates superior offspring by
mixing their parents’ genetic makeup. SCENORITA uses a two-
point crossover strategy, where two crossover points are picked
randomly from the mating individuals (i.e., parent obstacles)
and the genes between the two points are swapped. Fig. 4 illus-
trates the application of the two-point crossover operator on two
sample individuals; the two individuals are modified in place
and both keep their original length. We opt for the two-point

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on March 31,2025 at 18:39:43 UTC from IEEE Xplore.  Restrictions apply. 



HUAI et al.: SCENORITA: GENERATING DIVERSE, FULLY MUTABLE, TEST SCENARIOS FOR AUTONOMOUS VEHICLE PLANNING 4665

Fig. 5. An example of a crossover that produced individuals with invalid
attributes (highlighted in red).

crossover strategy since it maintains the length of individuals,
in addition to increasing the extent of disruption in their original
values. SCENORITA applies its two-point crossover between
obstacles in the same scenario (i.e., the same deme) to create
new obstacles; unlike prior work, where crossover is applied
at the scenario level by swapping obstacles across different
scenarios, making these previous approaches unable to create
new obstacles.

Crossover may produce invalid scenario configurations. For
example, after crossover of a vehicle’s attributes with those of
a pedestrian (Fig. 5), some obstacle attributes produced in the
offspring may violate the speed and size constraints in Section
IV-A, such as having a pedestrian’s speed changed from 10
km/h (a valid running speed for a pedestrian) to 50 km/h
(an unrealistic speed for a pedestrian). When such a case is
detected, SCENORITA replaces the violated obstacle attributes
with randomly generated values that fall within the valid ranges
described in Section IV-A.

Mutation. SCENORITA applies two forms of mutation opera-
tors: (1) it mutates a gene (attribute) of an individual (obstacle);
and (2) it applies the mutation operator to a deme (i.e., a sce-
nario). The first type of mutation randomly replaces attributes
of obstacles with new ones, where the newly generated values
follow the constraints defined in Section IV-A. For example,
the mutation operator can change the speed of a vehicle from
35 km/h to 50 km/h. This type of mutation does not change
the number of obstacles in a single scenario. The second type
of mutation aims to diversify the number of obstacles in a given
scenario Sc by (1) adding a randomly generated obstacle to Sc

or (2) removing a random obstacle from Sc.
Fig. 6(a) shows the mutation of an individual’s type gene,

changing from pedestrian to vehicle; Fig. 6(b) shows the
mutation of demes, by adding an individual or removing
an individual.

C. Generated Scenarios Player

Converting the genotype representation of tests to driving
simulations is the key task of Generated Scenarios Player.
While the generated scenario representation specifies the start
and the end location of each obstacle, it does not specify how
it should move during the simulation.

Generated Scenarios Player is responsible for modeling
obstacle movements and publishing ground truth obstacle

Fig. 6. (a) Mutating a gene in a single individual, (b) mutating a deme by
adding an individual and mutating a deme by removing an individual.

positions to the ADS at every timestamp j, and position pOk
j

of obstacle Ok is computed based on the modeling algorithm.
SCENORITA leverages the insight that state-of-the-art robotics
algorithms, i.e., a steering control algorithm (e.g., Stanley Con-
troller [76]) and a speed control algorithm (e.g., PID speed con-
trol [77]), can be used in combination to simulate the movement
of the obstacles. A steering control algorithm aims to ensure
the obstacle follows lanes on the map to reach its destination
defined by Scenario Generator. Recall from Section IV.B.1,
Scenario Generator only specifies the start and end location
of an obstacle. Generated Scenario Player then simulates the
movement of the obstacle along the shortest path on the map
from the start to the end location, and computes the obstacle’s
position POk

along with its speed SOk
. The final sequence is

then transformed into real-time perception information, and in
turn, used as input for the planning module of the ADS during
the scenario.

Once the positions and speeds of obstacles are computed,
Generated Scenarios Player starts the driving simulator, where
the planning module computes the driving trajectory taking into
consideration various aspects of the vehicle and elements of
its environment (e.g., distance to lane center, smoothness of
the trajectory).

D. Planning Output Recorder

The behavior of the ego car in the driving simulation
(Section IV-C) is recorded by the Planning Output Recorder,
which stores the ego car’s driving behaviors in a record file. The
recorded output enables Grading Metrics Checker to identify
and report the occurrences of safety and comfort violations.
These violations are checked when the driving scenario ends;
hence, it does not halt the driving simulation after observing
the first violation; instead, tests continue until the end of the
scenario. This approach balances the cost of running expensive
simulations with the benefit of collecting as many violations as
possible. Note that we do not count any violations occurring
after the first collision in a generated scenario.

SCENORITA uses the output records for reporting violations,
and evaluating the fitness of tests which guides the evolution
process in Section IV-B. Additionally, stored records enable us
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to replay scenarios with reported violations after SCENORITA
ends; this allows us to verify the correctness of generated tests,
and to closely analyze them along with their underlying causes.

E. Grading Metrics Checker

Previous work [24], [25], [26], [28], [29], [30], [31] considers
a limited number of test oracles, mainly consisting of one test
oracle per work (either collision detection or lane keeping). The
limited use of test oracles found in such techniques ignores
important safety and comfort issues (e.g., driving between lanes
for too long or causing motion sickness) and provides signifi-
cantly less insight into the testing of industry-grade AVs. Unlike
previous work, we consider 5 test oracles based on grading
metrics defined by Apollo’s developers [35]. These grading met-
rics test different aspects of AVs, ranging from traffic and road
safety to a rider’s comfort. In the remainder of this section, we
describe each grading metric in detail along with the definition
of its corresponding test oracle.

The Collision Detection oracle checks if the ego car reaches
its final destination without colliding with other obstacles. The
test oracle’s passing condition (i.e., not resulting in a violation)
for collision detection is defined as follows:

∀
1≤j≤t

(Dc(p
E
j , p

Ok
j )> 0 ∨OnBoundary(pOk

j )∨

collisiontype = “rear-end”) (7)

where t is the total duration of the scenario, and Dc(p
E
j , p

Ok
j ) is

a function that calculates the shortest distance between the po-
sition of the ego car pEj and the position of the kth obstacle pOk

j

at timestamp j. The distance is measured, in meters, between
the closest two points between the ego car’s polygon and an
obstacle polygon. If function Dc returns a non-zero distance in
meters between the ego car and any other obstacle during the
entire scenario, this indicates a passing condition. If a collision
does occur (i.e., Dc returns a distance equal to or less than zero),
we further check (1) if the obstacle is in the middle of a lane
change maneuver by checking if the obstacle is on a lane bound-
ary (OnBoundary(pOk

j )) and (2) if the ego car is being rear-
ended by another obstacle. This design effectively eliminates
cases where the obstacle ignores the safe distance needed during
a lane change and lane follow maneuvers and cause collisions
which the ego car cannot be reasonably responsible for [78],
[79], [80].

The Speeding Detection oracle checks if the ego car reaches
its final destination without exceeding the speed limit. The test
oracle’s passing condition (i.e., not resulting in a violation) for
speeding detection is defined as follows:

∀
1≤j≤t

Ds(s
l
j , s

E
j )≤ σsafe (8)

where t is the total duration of the scenario, and Ds(s
l
j , s

E
j ) is

a function that calculates the difference between the ego car’s
speed sEj and the speed limit of the current lane slj at timestamp
j. σsafe represents the allowed threshold for an ego car to drive
above the current speed limit. We allow the ego car to exceed the
current speed limit by a maximum of 8 km/h, anything above

that is considered a speed violation. We allow some degree of
driving above the speed limit since it can be unsafe for the ego
car to drive below or at the speed limit in certain conditions
[81] (e.g., driving at the speed limit when other cars are going
much faster can be dangerous).

The Unsafe Lane-Change oracle checks if the ego car
reaches its final destination without exceeding a time limit
δsafe when changing lanes. Recall from Section IV.B.2, that
δsafe represents a safe lane-change duration, which averages
at 5 seconds [46]. The test oracle’s passing condition (i.e., not
resulting in a violation) for unsafe lane change is defined as
follows:

∀
1≤j≤t

cEj ≤ δsafe (9)

where t is the total duration of the scenario, and cEj represents
the duration an ego car spends driving between two lanes at
timestamp j. If cEj at a given time exceeds δsafe, this indicates
the occurrence of an unsafe lane change.

The Fast-Acceleration oracle checks if the ego car reaches
its final destination without causing a rider’s discomfort by
accelerating too fast. The test oracle’s passing condition for fast
acceleration is defined as follows:

∀
1≤j≤t

aEj ≤ αfast (10)

where t is the total duration of the scenario, and aEj is the
acceleration of the ego car at timestamp j. αfast represents
the maximum acceleration allowed for an ego car before it
violates a rider’s comfort. We allow the ego car to accelerate
to a maximum of 4 m/s2, a threshold utilized in prior work
[82] and set by Apollo developers [35].

The Hard-Braking oracle checks if the ego car reaches its
final destination without causing a rider’s discomfort by braking
suddenly and excessively. The test oracle’s passing condition
for hard braking is defined as follows:

∀
1≤j≤t

aEj ≥ αhard (11)

where t is the total duration of the scenario, and aEj is the
acceleration of the ego car at timestamp j. αhard represents
the minimum acceleration allowed for an ego car before it
violates a rider’s comfort. We allow the ego car to decelerate to
a minimum of −4 m/s2, a threshold used in prior work [82]
and set by Apollo’s developers [35].

We differentiate between fast acceleration and hard braking
in our fitness functions and oracles for the following reasons: (i)
Both violations have conflicting fitness functions. As described
in Section IV.B.2, the fitness function for fast acceleration aims
to maximize the ego car’s acceleration, while the hard-braking
fitness function aims to minimize its acceleration, making it
critical to highlight the differences between both violations.
(ii) Differentiating between hard braking and aggressive accel-
eration enables us to draw correlations between other safety
violations and comfort violations. For example, understanding
the correlation between collision and hard braking as opposed
to collision and aggressive acceleration. (iii) Having two sep-
arate oracles allows customizing the specified thresholds. For
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TABLE III
THE SET OF FEATURES, SELECTED FOR EACH VIOLATION TYPE, AND USED

BY THE DUPLICATE VIOLATION DETECTOR TO CLUSTER SIMILAR VIOLATIONS

TOGETHER

Grading Metric Extracted Features

Collision Detection {pEtc , s
E
tc
, collisiontype, TOk

, ZOk
, s

Ok
tc

}

Speeding Detection {pEts , s
E
ts
, duration, valuets}

Unsafe LaneChange {pEtu , s
E
tu

, durationtu}

Fast Acceleration {pEtf , s
E
tf
, duration, valuetf }

Hard Braking {pEth , s
E
th

, duration, valueth}

example, one might want to set a hard braking threshold to be
−5 m/s2 while keeping fast acceleration at 4 m/s2.

F. Duplicate Violations Detector

One of the challenges of scenario-based testing is the pos-
sibility of producing driving scenarios with similar violations.
To improve the effectiveness of test generation, the Duplicate
Violations Detector automates the process of identifying and
eliminating duplicate violations; it achieves this by using an un-
supervised clustering technique [83] to group driving scenarios,
with similar violations, according to specific features.

The set of features used by the clustering algorithm is ex-
tracted from the recorded files (Section IV-D). For a collision
violation, the Duplicate Violations Detector extracts 6 features
at time tc, where tc indicates the first timestamp at which a col-
lision occurs. These features include the location of the ego car
pEtc ; ego car’s speed sEtc ; collisiontype, which indicates where
a collision occurs in respect to the ego car (e.g., “rear-end”,
“front”, “left”, etc.); the type of the obstacle (Ok) that collided
with the ego car TOk

; the obstacle’s size ZOk
; obstacle’s speed

at collision time sOk
tc .

For the remaining violations, we extract their respective fea-
tures at times ts, tu, tf , and th, which correspond to the first
timestamp a speeding, unsafe lane change, fast acceleration,
and hard braking occurs, respectively. These features include
the ego car E’s location at a violation time pE , the speed sE

of E, the length of time for which a violation lasts (duration),
and the violation value.

Given the extracted representation of driving violations in
Table III, Duplicate Violations Detector clusters driving scenar-
ios with similar violations into groups. For the clustering itself,
we chose DBSCAN (i.e., density-based spatial clustering of
applications with noise) [83], since it is more suited for spatial
data. We also experimented with k-means, which resulted in
clusters of undesired structure and quality. We avoided the
use of hierarchical clustering [84] due to its computationally
expensive nature.

Existing work has suggested using clustering techniques to
automatically categorize traffic scenarios or driving behaviours
[85], [86], [87], [88], [89]. These approaches are geared towards
clustering real-time, multi-trajectory, and multivariate time se-
ries data into similar driving encounters or scenario types. Un-
like these techniques, SCENORITA aims to eliminate duplicate

violations by clustering scenarios with violations. Hence, Du-
plicate Violations Detector only requires a carefully-selected,
smaller number of features involving just a few time frames in
a scenario.

We did not compare the duplicate elimination component
in SCENORITA against DeepHyperion [90] since the latter ap-
proach only computes the similarity of road segments based
on their smoothness (i.e., smoothness of turns), complexity
(i.e., number of turns), and orientation (i.e., number of di-
rections). SCENORITA computes the similarity of reported vi-
olations (collision, speed, hard braking, etc.), which is very
different from computing the similarity of road segments like in
DeepHyperion.

Duplicate elimination in AsFault [25] is based on similar
road segments, where the similarity between roads is calcu-
lated using the Jaccard index. In AV-FUZZER [24], duplicate
elimination is based only on obstacles’ trajectories, where the
similarity between trajectories is calculated using the Euclidean
distance. AutoFuzz [30] detects duplicate traffic violations us-
ing a learning-based seed selection and mutation strategy. The
paper claims to detect many unique violations. However, after
rerunning the approach and inspecting the scenarios generated,
it is evident that the evaluation of AutoFuzz has been sig-
nificantly impacted by simulator-induced problems. We will
elaborate on this further in Section V-B.

V. EVALUATION

In order to empirically evaluate SCENORITA, and to under-
stand how its configuration affects the quality of generated tests,
we investigate the following research questions:
RQ1: How effective are SCENORITA’s generated driving sce-

narios at exposing AV software to safety and comfort
violations?

RQ2: What is the runtime efficiency of SCENORITA’s gener-
ated tests and oracles?

RQ3: How diverse are scenarios generated by SCENORITA?
RQ4: To what extent does SCENORITA eliminate duplicate vi-

olations?

A. Experiment Settings

Our extensive evaluation consists of executing 79,051 vir-
tual tests on Baidu Apollo. For this reason, we conducted
our experiments on 4 machines: 2 machines each with 2
AMD EPYC 7551 32-Core Processor and 512GB of RAM,
and another 2 machines each with 1 Core i9 16-Core Pro-
cessor and 128GB of RAM. All 4 machines are running
Ubuntu 20.04. In the current implementation of SCENORITA,
we focus our efforts on testing Baidu Apollo 7.0 [91], an
open-source and production-grade AV software system that
supports a wide variety of driving scenarios and explicitly aims
for both safety and rider’s comfort.

We use Apollo’s simulation feature, Sim-Control, to sim-
ulate driving scenarios. Sim-Control [92] does not simulate
the control of the ego car; instead, the ego car acts on the
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planning results. Sim-Control takes Apollo’s planning deci-
sions PDE for ego car E (Definition 2) as input and publishes
localization messages corresponding to the planned positions
PP . The planning module then makes the next planning de-
cision based on the updated location of the ego car, and the
cycle continues to simulate a driving scenario. Sim-Control
is also recommended by one of Apollo’s maintainers to use
when focusing testing on the planning module [93]. By using
this built-in simulation capability, SCENORITA does not rely on
an external simulator and, thus, does not have to conform to how
the simulator specifies a scenario, allowing SCENORITA to take
full advantage of our novel, fully-mutable gene representation.

We configured SCENORITA to generate driving scenarios for
4 high-definition maps of cities/street blocks located in Califor-
nia: Sunnyvale is a large map consisting of 3,061 lanes, with a
total length of 107 km; San Francisco is another large map with
1,524 lanes and a total length of 109 km; San Mateo is a medium
map with 1,305 lanes and a total length of 24 km; and Borregas
Ave, which is a small map of a city block in Sunnyvale with 60
lanes and a total length of 3 km. The 4 maps consist of various
types of road curvature (e.g., straight, curved, intersections)
and different types of lanes (e.g., highways, city roads, bike
lanes, etc.). California is at the center of AV research, and one
of the main deployment grounds for AV; Waymo, GM Cruise,
and 60 other companies have obtained commercial licenses for
testing AVs in CA [94]. As a result, these maps are highly
representative of real-world AV driving scenarios with a wide
variety of diverse environmental elements. Note that any high-
autonomy (L4) ADS requires HD maps.

We believe that bugs in AV software can be exposed not only
by placing certain obstacles with certain attributes near the ego
car, but also by generating tests that cover as many different
parts of the map, and subsequently different road setups (inter-
section, u-turn, multi-lane roads, etc.), as possible. For example,
A large-scale study was conducted on 60,000 collisions in Or-
ange County, California between 2010 and 2018, to determine
which intersections pose the most risk for drivers in Orange
County [95]. This study ranked certain intersections of cities
in Orange County based on a Crash Risk Index (CRI) score,
i.e., a composite score that weighs the volume of collisions and
severity of injuries. The study found that certain intersections,
such as Alicia Parkway and Jeronimo Road—the only crossing
in Mission Viejo (a city in Orange County) to make the list—
saw the most injuries and the third-highest number of crashes
during the study period.

Similarly, in October 2021, a Pony.ai vehicle operating in
autonomous mode hit a street sign on a median, i.e., the strip
of land between the lanes of opposing traffic on a divided high-
way, in Fremont, California, prompting California to suspend
the company’s driverless testing permit; Pony.ai said that the
crash occurred less than 2.5 seconds after the automated driving
system shut down. It said “in very rare circumstances, a plan-
ning system diagnostic check could generate a false positive
indication of a geolocation mismatch” [96].

These studies and incidents further emphasize the need to
consider as many different parts of the map as possible, as
different road setups might expose more bugs or result in more

violations. We further discussed in Section V-B the impact of
each map on the found violations, and how SCENORITA with
its fully mutable obstacle representation was more effective in
finding violations, especially when running tests on larger and
more complex maps.

We do not compare SCENORITA against certain approaches
due to the fact that they address a different research problem.
For example, [25] and [61], [62], [63], are merely concerned
with generating road networks, [26] is concerned with finding
tests for which the ego car can avoid if traveling on an al-
ternative path, etc. The most closely related approaches [24],
[30] depend on a simulator (i.e., SVL [97]) external to the
ADS and has been sunsetted [98], making it no longer available
from its official provider. Due to the aforementioned problem,
we spent extra effort to reverse engineer a closed-source key
component of SVL and have since maintained the availability of
SVL for the benefit of the research community [99]. In addition,
the original implementation of AV-FUZZER maintained by the
authors [100] depends on a specific version of SVL that is
outdated and even has missing components, preventing it from
being reused. As a result, we rely on a forked version of AV-
FUZZER [101], which can operate with the most recent version
of SVL and Apollo 7.0 [91], and includes reimplementations
of the missing components. With these challenging reusability
issues addressed, we are now able to facilitate direct comparison
between SCENORITA, AV-FUZZER [24], [101], and AutoFuzz
[30], [102].

For each generation, there are 30 scenarios (i.e., demes),
each with a minimum of 10 obstacles (i.e., individuals) and
a maximum of 30 obstacles. Note that the higher number of
obstacles there are, the more overhead there is to generate the
real-time trajectories for all of the obstacles, and the scenario
may become overly crowded on a small map. We configured
the maximum scenario duration to be 30 seconds and stopped
scenario generation after 12 hours. We used the crossover op-
erator with a probability of 0.8 and mutated single individuals
with a probability of 0.2. Mutating a scenario by either adding
a new obstacle from another scenario or removing an obstacle
was performed with a probability of 0.1 each. we followed
the guidelines in [103], [104]—which suggests that standard
parameter settings are usually recommended—leading us to
use default settings in DEAP-1.3 [105], the framework used
in our search-based implementation. To compare AV-FUZZER
with SCENORITA, we rerun AV-FUZZER [101] for 12 hours
and analyzed scenarios generated by AV-FUZZER [101] using
metrics defined in Section IV-E. We follow a similar setup
to compare AutoFuzz [102] with SCENORITA; however, using
the configuration suggested by the authors of AutoFuzz [106],
[107], we are not able to run experiments for longer than 1
hour [108], [109], and we are not able to use AutoFuzz to
generate scenarios on San Francisco because the simulator kept
exiting after the first scenario. Additionally, we also evaluate
SCENORITA’s performance on maps that none of the other state-
of-the-art approaches support (i.e., San Mateo and Sunnyvale).
To account for the non-determinism of approaches, every ex-
periment (i.e., one approach spending a maximum of 12 hours
generating scenarios on one map) is repeated 5 times, resulting
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TABLE IV
A COMPARISON OF BUG-REVEALING VIOLATIONS PRODUCED BYSCENORITA, AV-FUZZER, AND AUTOFUZZ

Map San Francisco Borregas Ave Sunnyvale Loop San Mateo

Approach SCENORITA AV-FUZZER
p Â12

SCENORITA AutoFuzz
p Â12

SCENORITA SCENORITA

Experiment No. 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

Collision (duplicates) 15 2 2 1 2 0 0 0 0 0 0.01 1.0 7 8 7 11 7 1 0 2 0 0 0.01 1.0 4 1 3 1 0 15 1 2 14 19

Collision (unique) 10 1 1 1 1 0 0 0 0 0 0.01 1.0 5 6 3 7 6 1 0 1 0 0 0.01 1.0 3 1 1 1 0 3 1 1 5 5

Speeding (duplicates) 5 19 13 17 8 0 0 0 0 0 0.01 1.0 37 0 1 0 4 0 0 0 0 0 0.07 0.8 34 132 101 92 31 148 171 108 110 57

Speeding (unique) 4 6 6 2 6 0 0 0 0 0 0.01 1.0 6 0 1 0 3 0 0 0 0 0 0.07 0.8 8 25 22 16 9 23 20 17 25 9

FastAccel (duplicates) 19 62 43 41 35 0 0 0 0 0 0.01 1.0 1 0 0 0 1 0 0 0 0 0 0.17 0.7 1 3 0 1 3 0 5 2 3 1

FastAccel (unique) 8 14 16 8 12 0 0 0 0 0 0.01 1.0 1 0 0 0 1 0 0 0 0 0 0.17 0.7 1 2 0 1 1 0 3 1 1 1

HardBrake (duplicates) 165 311 275 187 219 0 4 0 0 0 0.01 1.0 109 8 55 23 34 0 0 0 0 0 0.01 1.0 1 23 12 5 0 10 31 7 31 8

HardBrake (unique) 29 35 9 23 24 0 4 0 0 0 0.01 1.0 21 6 18 9 8 0 0 0 0 0 0.01 1.0 1 12 10 3 0 3 10 3 13 3

USLC (duplicates) 240 190 193 114 115 0 0 0 3 1 0.01 1.0 411 137 217 171 209 22 20 19 15 11 0.01 1.0 27 31 32 12 33 92 91 89 124 144

USLC (unique) 54 62 56 16 27 0 0 0 2 1 0.01 1.0 52 37 50 30 35 11 5 10 5 4 0.01 1.0 2 10 10 7 9 13 30 14 16 35

Total (duplicates) 444 584 526 360 379 0 4 0 3 1 0.01 1.0 565 153 280 205 255 23 20 21 15 11 0.01 1.0 67 190 148 111 67 265 299 208 282 229

Total (unique) 105 118 88 50 70 0 4 0 2 1 0.01 1.0 85 49 72 46 53 12 5 11 5 4 0.01 1.0 15 50 43 28 19 42 64 36 60 53

in a total of 30 experiments and 305 hours of test executions.
Given the same amount of time, SCENORITA, AV-FUZZER,
and AutoFuzz generated a total of 75,900, 2,651, and 500
scenarios, respectively.

B. RQ1: SCENORITA’s Effectiveness at Generating Violation-
Inducing Scenarios

RQ1 investigates whether SCENORITA leads to more re-
ported violations, compared to other state-of-the-art approaches.
In conducting our evaluation of this research question, we
followed the guidelines in [104] for comparing SCENORITA
against both AV-FUZZER [24] and AutoFuzz [30]. Hence,
we performed two statistical tests: 1) Mann-Whitney U-test
p-values to determine statistical differences, and 2) Vargha–
Delaney’s Â12 index [110] to determine the effect size. The
results of these tests, in our experiments, are interpreted as
follows: If Mann-Whitney U-test produces p≤ 0.05, this indi-
cates that there is a significant difference between the quality
of solutions provided by SCENORITA and AV-FUZZER or Aut-
oFuzz. The Â12 statistical test measures how often, on average,
one approach outperforms another; if Â12 = 0.5, then the two
approaches achieve equal performance; if Â12 > 0.5, then the
first approach is better; otherwise, the first approach is worse.
The closer Â12 is to 0.5, the smaller the difference between the
techniques; the further Â12 is from 0.5, the larger the difference.

Table IV summarizes the number of violations and the
number of unique violations found by each approach. From
Table IV, we observe that SCENORITA found a total of 1,146
unique violations in all maps over the course of our experi-
ments. Furthermore, we find that SCENORITA discovered 60.57
times more unique violations compared to AV-FUZZER (Â12 =
1.0, p < 0.05), and 7.24 times more unique violations compared
to AutoFuzz (Â12 = 1.0, p < 0.05).

SCENORITA consistently detects more collision violations
on Borregas Avenue (avg. = 5.4, σ = 1.36) compared to that
on other maps. We believe the size of the map correlates to
the number of collision violations detected, as it increases the
chance of the obstacle being closer to the ego car during a
scenario. On larger maps (e.g., Sunnyvale Loop, San Francisco),
obstacles may be traveling on different parts of the map that
are far away from the ego car, and evolve for many generations
before they come near the ego car.

Fig. 7. A scenario generated by SCENORITA that results in Apollo rear-
ending a dynamic obstacle. The planning module does not plan to slow
down for the obstacle because of the incorrect prediction trajectory.

Example Scenario. Fig. 7 shows a snapshot of a scenario
before Apollo and an obstacle collided on the map of San
Francisco. In this scenario, Apollo ends up colliding with the
obstacle from behind. Since the obstacle is traveling in its
own lane and has the right-of-way, Apollo is fully responsi-
ble for this collision violation. After inspecting the violation
from Dreamview, we identified its root cause being incorrect
prediction trajectory. The obstacle is traveling at 3.3 m/s
(11.88 km/h) and is continuing to travel in a straight line, but
Apollo’s prediction module predicts the obstacle will drive off-
road toward the left. Based on the incorrect prediction trajectory,
Apollo continues to plan to drive at 8.33 m/s (30 km/h)
despite being only 7.07 m away from the obstacle. Note that
the distance displayed by Dreamview (14.9 m) refers to the
distance between the center of the obstacle and the center of
the ego car, and 7.07 m is the distance between the rear of the
obstacle and the front of the ego car. To avoid this collision,
Apollo needs to decelerate at 4.92 m/s2. Unfortunately, by
the time the planning module realizes there will be a colli-
sion and starts making stop decisions, it is already too late
and Apollo collides into the obstacle from behind. The video
recording and its corresponding Apollo record file are available
at [111].

AV-FUZZER generates scenarios that focus on the ego car
traveling in a straight line while the obstacle frequently changes
lanes around the ego car. In a 12-hour experiment, AV-FUZZER
generated 570 scenarios and 190 of those scenarios involve the
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Fig. 8. A scenario generated by AV-FUZZER causing the ADS to be
involved in a side-impact collision. The obstacle changes lanes without
considering the distance needed to complete such a maneuver.

Fig. 9. Screenshot of a scenario generated by AutoFuzz using the version
of the simulator (left) specified in the paper with perception ground truth; the
right side shows Apollo’s Dreamview visualizing ADS’ execution state, which
is missing a yellow polygon that represents a pedestrian.

collision between the ego car and an obstacle. However, 69 of
the collisions detected are obstacles rear-ending the ego car, and
the remaining 121 collisions occurred because the obstacle reck-
lessly changes lanes. As shown in Fig. 8, a collision between
the ego car and the obstacle occurs during the obstacle’s lane
change maneuver; however, the ADS is not responsible for such
collision as the obstacle does not consider the distance needed to
complete such a maneuver. SCENORITA’s design of its collision
oracle effectively eliminates these types of collisions as the
obstacle is always fully responsible, i.e., there is no bug or
misbehavior causing such collisions in the ADS.

For AutoFuzz, we were not able to reproduce similar results
described in the paper. A careful inspection and analysis reveal
that the simulator is responsible for causing the ADS to collide
with obstacles. First, the simulator has known issues when
working with Apollo’s perception module, causing flickering
obstacle detection results [112], [113]; second, when solving
the previous problem by using the ground truth perception
provided by the simulator, pedestrians cannot be detected [114],
[115], [116]. Collisions detected under an incorrect SVL config-
uration cannot effectively reveal ADS bugs, and when rerunning
AutoFuzz with the simulator’s ground truth perception, we only
observe one type of valid collision, where the ego car stopped in
a junction to yield right-of-the-way to the obstacle. The obstacle
then crashes into the ego car because the obstacle only travels
along a straight line at a constant speed and does not react

Fig. 10. Parts of the map covered by each approach: blue indicates coverage
by the ego car, red indicates coverage by obstacles, and black lines are lanes
on the map.

to the ego car, which has already stopped. Fig. 9 illustrates
the problem with the simulator’s ground truth perception, as
the pedestrian’s position is not provided to Apollo, causing a
collision in the simulator.

Finding 1: In our experiments, SCENORITA found a total
of 1,146 unique safety and comfort violations including: 62
collisions, 208 speed violations, 565 unsafe lane changes, 71
fast acceleration violations, and 240 hard-braking violations.
Overall, SCENORITA significantly and always (Â12 = 1.0,
p < 0.05) outperforms other state-of-the-art approaches.

C. RQ2: Diversity of SCENORITA Scenarios

RQ2 investigates whether scenarios generated by
SCENORITA are more diverse, compared to other state-
of-the-art approaches. Fig. 10(a) depicts positions in which
either the ego car or obstacles have been on the map in
scenarios generated by AV-FUZZER, and Fig. 10(b) depicts
scenarios generated by SCENORITA. Scenarios generated by
AV-FUZZER require manual specification, thus generating
scenarios that are limited to only the manually-specified parts
of the map. When using a map with 1,524 lanes, AV-FUZZER
only generates scenarios with the ego car and obstacles
traveling on a single lane, limiting its capability to test other
types of ADS maneuvers in more complex road structures and
junctions; SCENORITA, with its fully mutable and more fine-
grained representation of obstacles, is capable of generating
diverse scenarios in which the ego car and obstacles can be
at any point on the map. Similarly, Fig. 10(c) and Fig. 10(d)
compares the positions the ego car and obstacles cover on
SCENORITA and AutoFuzz.

Covering more parts of the map allows the ADS to be tested
in more complex scenarios that involve junctions and traffic
control devices. While San Francisco is a large map with 91
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TABLE V
TIME EFFICIENCY (IN SECONDS) OF SCENORITA PER SCENARIO/GENERATION

HD Maps Stats Per Scenario Stats Per Generation
Generate Play Analyze E2E Mut/Cx Evaluate Select E2E

Borregas Ave 2.53 42.29 11.75 56.57 0.31 236.13 0.01 236.45
San Francisco 5.30 42.68 23.55 71.53 3.57 262.10 0.04 265.72

San Mateo 14.18 42.55 16.34 73.08 6.16 484.20 0.00 490.36
Sunnyvale Loop 25.06 42.34 17.57 84.96 14.73 807.35 0.06 822.13

junctions, 201 traffic signals, and 9 stop signs, AV-FUZZER
covers none of these map elements (0%) because it is specified
to cover only a single straight lane without passing through any
traffic control devices; at the same time, SCENORITA covers 91
(100%) junctions, 177 (88.06%) traffic signals, and 4 (44.44%)
stop signs. While Borregas Avenue is a small map with only 2
junctions, 4 traffic signals, and 2 stop signs, scenarios generated
by AutoFuzz can only cover 1 junction and 1 signal at that
junction; when using the same map, SCENORITA covers all
junctions, signals, and stop signs. Manual specification of a dif-
ferent scenario type for AV-FUZZER and AutoFuzz to increase
their map coverage would require an extensive amount of error-
prone, time-consuming human effort to (1) specify the same
number of obstacles, (2) cover similar parts of the map, and (3)
cover a similar number of junctions and traffic control devices
compared to SCENORITA.

SCENORITA’s ability to automatically identify routing
requests and cover significantly more parts of the map also
allowed us to identify rare cases where the ego car stops
indefinitely at certain parts of the map. We manually analyzed
the scenarios and were able to localize the root cause in the
HD map. We submitted a fix for this bug and it has been
accepted by Apollo’s developers [117].

Finding 2: SCENORITA is able to cover substantially more
parts of the map through (1) its more general design of ana-
lyzing the map and automatically specifying paths of obsta-
cles, (2) a fully mutable genetic representation that allows
obstacles’ paths to be different across scenarios, and (3) using
demes to construct scenarios in which the ego car starts and
ends at different locations. On a large map with 91 junctions,
201 traffic signals, and 9 stop signs, the state-of-the-art ap-
proaches cover none of these, while SCENORITA covers 91,
177, and 4 of them, respectively.

D. RQ3: Efficiency of SCENORITA

In RQ3, we study the efficiency of SCENORITA by measuring
its execution time per scenario, per generation, and the number
of scenarios generated per 12-hour period.

Table V shows that the efficiency of SCENORITA correlates to
the size of the HD Map used. On the smallest map, SCENORITA
takes 56.57 seconds, on average, to execute a scenario from
end-to-end (E2E); it takes 2.53 seconds, on average, to gener-
ate the scenario representation, confirm its validity according
to the domain-specific constraints, and generate the obstacles’
trajectories (Generate); 42.29 seconds to initialize the ADS and
play the corresponding driving simulation (Play); and 11.75
seconds for checking the grading metrics (Analyze). Simulating

TABLE VI
AVERAGE NUMBER OF SCENARIOS GENERATED PER HOUR

Map
Approach

AV-FUZZER AutoFuzz SCENORITA

Borregas Ave - 76.9 457.5
San Francisco 44.2 - 407.5

San Mateo - - 222.5
Sunnyvale Loop - - 132.5

driving scenarios is time-consuming (e.g., properly resetting
the states of the ADS, playing the simulation for 30 seconds,
and recording the ego car’s behavior). As a result, the scenario
simulation stage strongly affects the efficiency of the overall test
generation process in SCENORITA. To leverage the insight that
multiple scenarios can be parallelized using the lightweight sim-
ulation (i.e., Sim-Control), each generation of the genetic
algorithm takes less time compared to sequentially executing
the scenarios. We find that the time consumed by producing
offspring (Mut/Cx) and performing selection (Select) is neg-
ligible, and it takes, on average, 236.45 seconds to evaluate
30 scenarios on the smallest map (an 86.07% reduction com-
pared to sequential execution time), and 822.13 seconds on
the largest map (a 67.74% reduction compared to sequential
execution time).

Table VI shows a comparison between the number of sce-
narios generated per hour for SCENORITA, AV-FUZZER, and
AutoFuzz. On San Francisco, a map that both SCENORITA and
AV-FUZZER support, SCENORITA generated 407.5 scenarios
per hour, outperforming AV-FUZZER by 821.95%. Similarly,
on Borregas Avenue, SCENORITA outperforms AutoFuzz by
494.93%. On the maps that other state-of-the-art approaches
do not support, SCENORITA generated scenarios at 222.5 per
hour and 132.5 per hour, respectively, on San Mateo and
Sunnyvale Loop.

Finding 3: SCENORITA efficiently mitigates the overhead of
initializing the ADS and analyzing scenarios, and generates
30-second driving scenarios that expose AV software to safety
and comfort violations at a rate of 2.19 to 7.61 scenarios per
minute. Overall, SCENORITA is between 4.95 and 8.22 times
more efficient compared to other state-of-the-art approaches.

E. RQ4: Duplicate Violation Detection

This RQ investigates the extent to which SCENORITA elimi-
nates similar violations. To answer this RQ, we configure DB-
SCAN [83] to cluster the scenarios with similar violations into
the same group, based on a set of features as described in Sec-
tion IV-F. We adopted the approach in [118] to automatically
determine the optimal value for epsilon; epsilon defines the
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maximum distance allowed between two points within the same
cluster. Eliminating duplicate violations is quick and takes, on
average, 0.1 seconds per experiment.

To confirm the correctness of generated clusters, three of the
authors manually and independently evaluated the accuracy of
generated clusters in 10 randomly-selected experiments (i.e.,
one approach spending a maximum of 12 hours generating
scenarios on one map) out of a total of 30 (33.33%). The authors
examined violations in the same clusters to confirm whether
they are similar by comparing a set of features associated with
each scenario in the cluster. For example, consider two scenar-
ios, Scenario_1 and Scenario_17, both of which are in
the same cluster and have a collision violation: In such a case,
we compare the set of features (from Section IV-F) of the two
scenarios to confirm that the collision occurred in the same
position in Scenario_1 as it did in Scenario_17 (pEtc ),
the ego car in both scenarios collided with an obstacle with the
same type (TOk

) and size (ZOk
), the crash in both scenarios is

the same (collisiontype), etc. The authors also replayed these
scenarios on Dreamview to observe if the scenarios in one
cluster have similar violations.

Table IV shows all violations (including duplicates) gener-
ated by SCENORITA, AV-FUZZER, and AutoFuzz along with
the unique number of violations (generated by the Duplicate
Violations Detector). From the results in Table IV, we observe
that SCENORITA generated a total of 431 unique violations on
San Francisco compared to AV-FUZZER which generated 7
unique violations; SCENORITA also generated a total of 305
unique violations on Borregas Avenue compared to AutoFuzz
which generated 37. On two other maps that none of the state-
of-the-art approaches support, SCENORITA generated a total of
155 and 255 unique violations, respectively.

Finding 4: Our manual verification of 33.33% of our ex-
periments shows that Duplicate Violation Detector is able
to identify and eliminate duplicate violations. From a total
of 5,617 violations detected by SCENORITA, it effectively
and correctly clustered all violations generated into 1,146
unique violations. When compared against state-of-the-art
approaches, SCENORITA finds at least 7 times more unique
safety and comfort violations on maps they support.

VI. THREATS TO VALIDITY

Internal threats. One potential threat to internal validity
is the selection of scenario durations: Simulation-based tests
require the execution of time-consuming computer simulations
to produce violations. We determined from our experimenta-
tion that our selected scenario duration of 30 seconds finds a
significant number and variety of violations without incurring
drastically long test execution times. Furthermore, there is no
agreed-upon threshold in related work that dictates the correct
scenario duration. For example, [69] opted for a duration time
of 10 seconds per scenario since it serves the goal of their test
generation framework.

Another threat to validity is related to choosing DBSCAN
(i.e., density-based spatial clustering of applications with noise)

in eliminating duplicate violations. To mitigate this threat to
validity, we ran both k-means and DBSCAN on a random set of
scenarios with duplicate violations, then manually inspected the
clusters of scenarios with similar violations generated by both
techniques. We found that (i) k-means resulted in clusters of
undesired structure and quality; (ii) unlike DBSCAN, k-means
is not an ideal algorithm for latitude-longitude spatial data
because it minimizes variance, not geodetic distances; (iii) DB-
SCAN is deterministic while k-means is not; and (iv) DBSCAN
does not require specifying the number of clusters in advance—
it determines them automatically based on the maximum dis-
tance allowed between two points within the same cluster. We
avoided using hierarchical clustering due to its computationally
expensive nature.

SCENORITA’s use of the ADS’s lightweight built-in simula-
tion capability also poses an internal threat. Sim-Control
does not model the physics of traffic participant collision. As
a result, the ego vehicle may continue to move forward after a
collision since there is no physics engine preventing 3D objects
from overlapping with each other. This characteristic of Sim-
Control does not invalidate any of the violations but instead
reveals the ADS’ planning module continues to plan on moving
forward, even after being involved in a collision. SCENORITA
mitigates the threat by discarding events that occurred after
any type of collision occurring between the ego car and the
obstacles since their trajectories will be different in the physical
world.

Another threat to validity arises from verifying the correct-
ness of the oracles implemented and scenarios generated by
SCENORITA. There are, unfortunately, neither automated strate-
gies nor ground truth that can be used to assess the accuracy.
For that reason, we manually verified all of the scenarios that
involve collision violations and a randomly sampled set of
scenarios for other types of violations. To further mitigate this
threat, we make our testing framework available online [47]
for others to verify and build upon our work, thus supporting
reusability and reproducibility as well.

To account for validity threats arising from randomness in
search algorithms, we follow the guidelines in [104]: (i) we
repeated the experiments for each approach (SCENORITA, AV-
FUZZER, AutoFuzz) 5 times, (ii) we used the non-parametric
Mann-Whitney U-test to detect statistical differences and re-
ported the obtained p-value, and (iii) we reported Â12 index
(a standardized effect size measure).

To mitigate threats arising from our selection of search opera-
tors, we selected (i) a widely-used algorithm [119] in the search-
based software engineering (SBSE) community, i.e., NSGA-
II and (ii) crossover and mutation algorithms that best fits
our gene representation. We opted for NSGA-II as a selection
operator since it’s an effective algorithm for solving multi-
objective optimization problems (i.e., problems with conflict-
ing fitness functions) and further aims to maintain the diver-
sity of individuals. In other words, we specifically intended
to generate scenarios with multiple violations coexisting to-
gether. We further find that this design does not result in test
smells causing much of an issue. For example, collision does
not always trigger hard braking; as a matter of fact, from a
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total of 1,514 scenarios with a hard-braking violation, 1,504
(99.34%) of them do not contain a bug-revealing collision vi-
olation. For parameter tuning, we followed the guidelines in
[103], [104]—which suggests that standard parameter settings
are usually recommended—leading us to use default settings
in DEAP-1.3 [105], the framework used in our search-based
implementation.

External threats. One external threat is that we applied
SCENORITA to a single AV software system, Apollo. To miti-
gate the threat, we selected the only high autonomy (i.e., Level
4), open-source, production-grade AV software system that sup-
ports a wide variety of driving scenarios and explicitly aims
for both safety and driver comfort. To mitigate threats related
to the generalizability of our results to other maps, we applied
SCENORITA to three high-definition maps of cities in California:
Borregas (60 lanes), San Mateo (1,305 lanes), San Francisco
(1,524 lanes) and Sunnyvale (3,061 lanes). Note that Autoware
[120], despite being open-source and widely-used [121], is
considered a research-grade and not a production-grade AV
software system [122], [123], which we further verified through
speaking with Christian John, the Vice Chair and Chief Soft-
ware Architect of Autoware.

Construct Validity. The main threat to construct validity is
how we measure and calculate safety and comfort violations. To
mitigate this threat, we measure these violations using grading
metrics defined by Apollo’s developers [35]. We utilize thresh-
olds (e.g., speeding or acceleration thresholds) set by Apollo’s
developers [35]; the U. S. Department of Transportation [46];
or thresholds used by major AV companies (e.g., Alphabet
Waymo [81]).

Another threat to construct validity and a potential limita-
tion to our approach is how we define safety violations. We
use a single oracle to detect safety violations that the ADS is
responsible for, while some other oracles may also be suited
for safety, such as checking if the ego car invades opposing
lanes and driving off-road. This threat is mitigated as the ego
car, in some cases, may be forced to execute maneuvers that
pose safety risks to reach its destination, such as borrowing
opposing lanes to bypass static obstacles that are blocking a
single-lane road. This type of action should still be allowed
when the maneuver can be executed safely without disturbing
traffic; if the maneuver could not be executed safely, it will still
result in a collision violation which our approach will be able
to detect.

Another threat to construct validity involves SCENORITA’s
choice of simulation. The state-of-the-art approaches that we
compared against all generate tests using an external simulator,
while SCENORITA generates tests using ADS’ built-in simula-
tion capability. Running simulations with an external simula-
tion is more hardware-intensive as it requires the machine to
run additional software (i.e., the simulator) and requires the
ADS to run both the planning module and the control mod-
ule, as opposed to only running the planning module when
using ADS’ built-in simulation. To mitigate this threat, we use
high-performance machines (e.g., a machine with 2 32-core pro-
cessors and 512GB of RAM) to conduct our experiments. More-
over, the built-in simulation capability [93] is recommended by

one of the ADS’ maintainers since it allows tests to focus on
finding bugs in the planning module, which is the main focus
of this paper.

VII. CONCLUSION

In this paper, we propose SCENORITA, a novel search-based
testing framework, which exposes AV software to 3 types of
safety-critical and 2 types of motion sickness-inducing sce-
narios in a manner that reduces duplicate scenarios, allows
fully mutable obstacles with valid and modifiable obstacles
trajectories, and follows domain-specific constraints obtained
from authoritative sources. We evaluate SCENORITA on Baidu
Apollo, a high autonomy (L4), open-source, and production-
grade AV software system that supports a wide variety of driv-
ing scenarios.

We compare SCENORITA with the state-of-the-art testing
approaches that only use a partially mutable representation.
SCENORITA found a total of 1,146 unique safety and com-
fort violations including: 62 collisions, 208 speed violations,
565 unsafe lane changes, 71 fast-acceleration violations, and
240 hard-braking violations—all of which are bug-revealing.
SCENORITA is able to cover all junctions on both maps and at
least 86.19% of all traffic control devices, while state-of-the-art
approaches can cover at most 1. Moreover, SCENORITA is more
efficient as it generates between 4.95 and 8.22 times more sce-
narios per hour compared to other state-of-the-art approaches.

For future work, we aim to expand SCENORITA to handle (i)
the generation of scenarios and oracles focused on traffic lights
and stop signs and (ii) extending the work to other AV software
systems (e.g., Autoware).
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